
Async Rust and 9p server
Wedson Almeida Filho

Agenda

● Introduction
○ Motivation, async Rust, kernel implementations

● 9p server
○ Description, some implementation samples

● Demo

● Discussion

Motivation

● Showcase productivity gains from using Rust
○ In addition to security benefits

● Considerable attack surface
○ For example, receiving untrusted data over the network

● Pure software module
○ No inherent unsafety due to bus mastering devices

● Started looking at ksmbd
Not an ideal initial project because of complexity of the protocol

○ Also requires a user-space component

Async Rust

● Talked about it at OSS North America: link

● In summary:
○ Compiler automatically creates a state machine from thread-like code
○ Kernel crate implements executors and reactors

https://youtu.be/jIX2gYsgr10?t=949

Workqueue Executor

● Spawning tasks
○ Allocates task: contains future plus executor-specific state (e.g., work_struct)
○ Adds to task list
○ Wakes task up

● Waking tasks up
○ Enqueues task for running (e.g., queue_work_on)
○ On worker thread: accesses revocable task, poll future, cleans it up when it completes

● Tearing down
○ All state is dropped (more on this later)

Socket Reactor

● Initialisation
○ Pinned larger struct containing some state plus wait queue entry (wait_queue_entry)
○ Wait queue entry with a custom function (init_waitqueue_func_entry)
○ Adds entry to the socket's wait queue (add_wait_queue)

● Waking up
○ Wait queue callback is called: uses container_of to get to outer struct
○ Checks mask for filter callbacks (EPOLLIN, EPOLLOUT, etc)
○ Calls Waker::wake to instruct executor to run task again

● Cleaning up
○ Removes entry from socket's wait queue (remove_wait_queue)

9p file server

What is 9p?

● Plan 9 is an operating system from Bell Labs (link)
○ Originally designed by Ken Thompson, Rob Pike, et al.

● Included a remote file system protocol: Plan 9 File Protocol, 9P
○ The Linux kernel already includes a 9p client
○ Qemu implements a server to share a host directory with guest

● Straightforward: original protocol only includes 10 operations

http://9p.io/plan9/
http://9p.io/sys/man/5/INDEX.html
https://elixir.bootlin.com/linux/v5.19/source/fs/9p

What is implemented

● Not a file system
○ Though we have some support for it here

● Exposes the local file system over the network

● Read-only for now

● Implements 9P2000.L – Linux extensions

● WIP but available here

https://github.com/wedsonaf/linux/commits/fs
https://github.com/wedsonaf/linux/commits/9p

Code stats

 fs/k9pd/Kconfig | 10 +
 fs/k9pd/Makefile | 5 +
 fs/k9pd/buffer.rs | 286 +++++++++++++++
 fs/k9pd/k9pd.rs | 171 +++++++++
 fs/k9pd/localfs.rs | 382 +++++++++++++++++++++
 fs/k9pd/protocol.rs | 200 +++++++++++
 6 files changed, 1054 insertions(+)

Receiving requests

async fn next_pdu(&self, max_size: u32) -> Result<Box<[u8]>> {
 // Read the length.
 let mut len_in_bytes = [0u8; 4];
 self.stream.read_all(&mut len_in_bytes).await?;

 let len = u32::from_le_bytes(len_in_bytes).checked_sub(4).ok_or(EIO)?;
 if len > max_size {
 return Err(E2BIG);
 }

 // Allocate the buffer and read the rest.
 self.stream.alloc_read_exact(len as usize).await
}

Dispatching requests

loop {
 let pdu = conn.next_pdu(max_size).await?;
 let (_op, tag) = protocol::get_op_tag(&pdu)?;
 let res = spawn_task!(
 executor.as_ref_borrow(), conn.clone().handle_pdu(tag, pdu));
 if let Err(e) = res {
 conn.write_result(|b| protocol::error(b, tag, e)).await?;
 }
}

Serialising writes

async fn write(&self, buf: &[u8]) {
 let mut inner = self.inner.lock().await;
 if inner.err.is_err() {
 // A previous write failed so we won't even try this one.
 return;
 }
 let ret = self.stream.write_all(buf).await;
 if ret.is_err() {
 // Store away the error.
 inner.err = ret;
 }
}

Cleaning up

● Executor keeps track of all incomplete tasks

● Auto-stop handles stop executors when they go out of scope

● Stopping an executor waits for running tasks to go to sleep
○ Also ensures that sleeping tasks don't wake up anymore
○ Drops all tasks

● "Local variables" of async functions are also dropped
○ Reactors unregister from subsystems
○ Allocations are freed, ref-counted objects are released, etc.

● Stopping an executor results in everything being dropped automatically

Demo

Discussion

Possible topics

● Additional potential candidates to be written in async Rust
○ Driver state machines?

● Additional reactors
○ kiocb, urb, bio?

● Implementing more non-blocking operations/primitives
○ Select
○ Communication channels (send/receive data structures)
○ Memory allocation (GFP_KERNEL): can we give up the worker instead of sleeping?
○ Read-write mutexes
○ Condition variables

Possible topics (cont'd)

● Integration with user-space implementations
○ Tokio panics on memory allocation failures

● Destruction of mutual exclusion primitives
○ State may be inconsistent
○ Release the lock? Keep it locked? Poising (which implies acquisition may fail)?

● Fault isolation
○ Should we unwind stacks, drop objects, etc. for panics in tasks?
○ At the moment, we kill a workqueue thread

Thank you!

