Async Rust and 9p server
Wedson Almeida Filho

Agenda

Introduction
Motivation, async Rust, kernel implementations

Op server
Description, some implementation samples

Demo

Discussion

Motivation

Showcase productivity gains from using Rust
In addition to security benefits

Considerable attack surface
For example, receiving untrusted data over the network

Pure software module
No inherent unsafety due to bus mastering devices

Started looking at ksmbd

Not an ideal initial project because of complexity of the protocol
Also requires a user-space component

Async Rust

Talked about it at OSS North America: link

In summary:
Compiler automatically creates a state machine from thread-like code
Kernel crate implements executors and reactors

https://youtu.be/jIX2gYsgr10?t=949

Workgueue Executor

Spawning tasks

Allocates task: contains future plus executor-specific state (e.g., work_struct)
Adds to task list
Wakes task up

Waking tasks up
Enqueues task for running (e.g., queue_work_on)
On worker thread: accesses revocable task, poll future, cleans it up when it completes

Tearing down
All state is dropped (more on this later)

Socket Reactor

Initialisation
Pinned larger struct containing some state plus wait queue entry (wait_queue_entry)
Wait queue entry with a custom function (init_waitqueue_func_entry)
Adds entry to the socket's wait queue (add_wait_queue)
Waking up
Wait queue callback is called: uses container_of to get to outer struct
Checks mask for filter callbacks (EPOLLIN, EPOLLOUT, etc)
Calls Waker : :wake to instruct executor to run task again
Cleaning up
Removes entry from socket's wait queue (remove_wait_queue)

Op file server

What is 9p?

Plan 9 is an operating system from Bell Labs (link)
Originally designed by Ken Thompson, Rob Pike, et al.

Included a remote file system protocol: Plan 9 File Protocol, 9P

The Linux kernel already includes a 9p client
Qemu implements a server to share a host directory with guest

Straightforward: original protocol only includes 10 operations

http://9p.io/plan9/
http://9p.io/sys/man/5/INDEX.html
https://elixir.bootlin.com/linux/v5.19/source/fs/9p

What is implemented

Not a file system
Though we have some support for it here

Exposes the local file system over the network
Read-only for now
Implements 9P2000 . L — Linux extensions

WIP but available here

https://github.com/wedsonaf/linux/commits/fs
https://github.com/wedsonaf/linux/commits/9p

Code stats

fs/k9pd/Kconfig | 10 +

fs/k9pd/Makefile | 5 +

fs/k9pd/buffer.rs | 286 +++++++++++++++
fs/k9pd/k9pd.rs | 171 +++++++++
fs/k9pd/localfs.rs | 382 +++++++++++++++++++++

fs/k9pd/protocol.rs | 200 +++++++++++
6 files changed, 1054 insertions(+)

Receiving requests

async fn next_pdu(&self, max_size: u32) -> Result<Box<[u8]>> {
// Read the length.
let mut len_in_bytes = [6u8; 4];
self.stream.read_all(&mut len_in_bytes).await?;

let len = u32::from_le_bytes(len_in_bytes).checked_sub(4).ok_or(EIO)?;
if len > max_size {

return Err(E2BIG);
}

// Allocate the buffer and read the rest.
self.stream.alloc_read_exact(len as usize).await

Dispatching requests

loop |
let pdu = conn.next_pdu(max_size).await?;
let (_op, tag) = protocol::get_op_tag(&pdu)?;
let res = spawn_task!(
executor.as_ref_borrow(), conn.clone().handle_pdu(tag, pdu));
if let Err(e) = res {
conn.write_result(|b| protocol::error(b, tag, e)).await?;
}

Serialising writes

async fn write(&self, buf: &[u8]) {
let mut inner = self.inner.lock().await;

if inner.err.is_err() A
// A previous write failed so we won't even try this one.

return;

}

let ret = self.stream.write_all(buf).await;

if ret.is_err() {
// Store away the error.

inner.err = ret;

Cleaning up

Executor keeps track of all incomplete tasks
Auto-stop handles stop executors when they go out of scope

Stopping an executor waits for running tasks to go to sleep
Also ensures that sleeping tasks don't wake up anymore
Drops all tasks

"Local variables" of async functions are also dropped
Reactors unregister from subsystems
Allocations are freed, ref-counted objects are released, etc.

Stopping an executor results in everything being dropped automatically

Demo

C

ISCUSSION

Possible topics

Additional potential candidates to be written in async Rust
Driver state machines?

Additional reactors
kiocb, urb, bio?

Implementing more non-blocking operations/primitives
Select
Communication channels (send/receive data structures)

Memory allocation (GFP_KERNEL): can we give up the worker instead of sleeping?
Read-write mutexes

Condition variables

Possible topics (cont'd)

Integration with user-space implementations
Tokio panics on memory allocation failures

Destruction of mutual exclusion primitives

State may be inconsistent
Release the lock? Keep it locked? Poising (which implies acquisition may fail)?

Fault isolation

Should we unwind stacks, drop objects, etc. for panics in tasks?
At the moment, we kill a workqueue thread

Thank you!

